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ABSTRACT

Several physical properties of the epilith of Mercury can be investigated
by a comparison of infrared and microwave brightness temperatures with the
predictions of theoretical thermal models of the planet. The results pre-
sented here have been obtained by numerical solution of the one-dimensional
heat-conduction equation with temperature-dependent thermal conductivity,
using surface boundary conditions that include the modification of the insola-
tion cycles by the spin-orbit coupling and large orbital eccentricity of the
planet. For comparison with microwave observations, disk-averaged bright-
ness temperatures are presented as a function of phase angle and heliocentric
longitude of Mercury for wavelengths of 0.12, 0. 34, 0.80, 1.90, 3.75, and
11. 30 cm. These predictions are compared with calculations from simpler
lunar-type models and are used to analyze the existing infrared and micro-
wave observations of the planet. A means of determining observationally

-1/2 -1 2 1/2
c

both the mean thermal parameter (Kpc) al = cm” sec deg and the

significance of an effective conductivity due to radiative thermal-energy trans-

port is presented.

The observations of a microwave phase effect are all found to be com-
patible with a ratio of electrical to thermal skin depths approximately equal

to the wavelength. The thermal parameter is, from infrared observations,
1 2 1/2
cm sec

than 10“4 cal cn':f'l sec"1 deg. The loss tangent of the material is greater

than 2 X 10_3. Although some contradictions are present, the observations

larger than 200 cal” deg, indicating a thermal conductivity less

strongly suggest an increase of mean brightness temperature with wave-
length, indicating a significant radiative contribution to the subsurface
thermal conductivity. All these conclusions are consistent with the hypoth-
esis that the epilith of Mercury is physically very similar to that of the

Moon.
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RESUME

Plusieurs propriétés physigquesde l'épilithe de Mercure peu-
vent 2tre étudiées en comparant les températures de brilliance
dans l'infrarouge et les ondes ultracourtes avec les prédictions
théoriques des modeles thermiques de la planete. Les resultats
présentés ici ont €t€ obtenus par la solution numérique de 1'é-
guation unidimensionnelle de conduction de la chaleur, la conduc~
tivité thermique dépeﬁdant de la température; des conditions ii—
mites & la surface comprenant la modification des cycles d'insola-
tion par le couplage spin-orbite et la grande excentricité orbi-
tale de la plangte ont été employées. Les moyennes des tempéra-
tures de brilliance obtenues sur le disque sont représentées en
fonction de l'angle de phase et de la longitude heéliccentrique
de Mercure pour les longueurs d'onde 0,12, 0,34, 0,84, 1,90, 3,75,
et 11,30 em, afin de les comparer avec les observations faites
avec les ondes ultracourtes. Ces prédictions sont comparées avec
les calculs faits & partir de modeles plus simples du type lunai-
re et sont employées pour analyser les observations de la planéte
gue l'on a dansl'infrarouge et les ondes ultracourtes. Nous pre-
sentons un moyen de déterminer par l'observation a la fois le pa-

-l/zcal_lcmzsecl/zdeg et 1'impor-

ramétre thermique moyen (Kpc)
tance d'une conductivité effective due au transport de l'énergie

thermigue radiative.

Nous trouvons que toutes les observations d'un effet de
phase en ondes ultracourtes sont compatibles avec un rapport des
profondeurs de peau électriques et thermigues approximativement
€gal a la longueur d'onde. A partir des observations dans 1l'in-
frarouge, nous déduisons que le paramétre thermique est plus
grand que 200 cal-lcmzsecl/zdeg, ce qui indique une conductivite
thermique infdrieure 2 lD—4cal cm_ldeg. La tangente de perte
qui caractérise la matiere est supérieure a 2.10—3. Bien qu'il

y ait certaines contradictions, les cbservations permettent de



penser qu'il y a un accroissement de la temperature de brillian-
ce maoyenne avec les laongueurs d'onde ce gui indigue une impor-
tante contribution radiative & la conductivité thermigue de la
sous~surface. Toutes ces conclusions sont compatibles avec
l'hypothése que l'épilithe de Mercure est physiquement tres

semblable & celle de la lune.

KOHCITEKT

Heckonpko @u3uuecKUX cBOUCTB snunuta MepKypus MOTryT OHTH
u3yuaeMb IIyTeM CPaBHeHUHA UHPPaAKpacHOW ¥ MUKPOBOJIHOBOH TeMmIepa-
TYP APKOCTU C NIPEACKAa3aHUAMU TEeODPEeTHMUECKUX TEIJIOBHX MOmeeil
TUIaHETH. IIpuBeNeHHHEe 3IeCh DPEe3yNhTaTH OHIU IOJNYUEeHH ¢ IIOMOWLI
YUCJIOBOTO PeleHUs ONHO-Pa3MEPHOTO YPaBHEHUA TEINIONPOBONHOCTU C
3aBUCHIEN OT TeMIepaTyph TelJIONPOBONHOCTHN, MNONB3YHACH TPAHUUHHMU
YCIOBUAMMU IIOBEPXHOCTU BKINUANIUX U3MEHEHUEe LUWKIJIOB WHCOJIALUUN B3a-—
UMOIEeICTBUEM CIUH—OPOUTH ¥ OONBUUM 3IKCUEHTPUCUTETOM OPOUTH Ijia-
HeTH. [nA CpaBHEHUS C MUKDOBOJHOBHMY HAOMWIEHUAMU, YCepeIHeHHHE
IO IOUCKY TEeMIIepaTypH SAPKOCTU NPUBONATCH Kak QYHKUMUY aBOBOTO
yria ¥ TelUOLeHTPUUECKOW HNONTOTH Mepxkypus mna mnue Boxx B 0,12
0,34, 0,80, 1,90, 3,75 n 11,30 cM, OTH TPOTHOBH CPABHUBAKWTCH C
BHUNUCIEHUAMU nia 60Jiee NPOCTHX JIYHHOTO THUIA MOIeNell ¥ IpuMeHs-
0TCA INA aHanIu3a UMenEUXCH WHEPPaAKPACHHX ¥ MUKPOBOJNHOBHX HAaOI-
meHuil nuaxHeTH. [IPUBOOUTCHA CHOCOC ONIpemNeNeHUd, IyTeM HAGNWIeHUWH,

=-1/2 -1 2 1/2
of6oux cpemHero Temnosoro napamerpa (Kpc) / Kajl CM CeK / rpanm
7 3HauveHUS 2PPEeKTUBHOW NPOBOINHOCTK BH3HBAEMOR IIEpPEHOCOM U3Iyua—

eMOt TeNJOBOW BSHEPTUU.

Bce HabOnwmeHus MUKPOBONHOBOTO 3dpdexrTa Pasmw OwnIu HameHw
COTJIACHHMU C COOTHOMEHUEM MeXIy DJIeKTPUUECKVMU U TeMIepaTyPHHMNI
TIOBEPXHOCTHHMU TIyOUMHAMU NPUOIUBUTENBHO PABHHMU IOJAVHE BOJIHH .
TemnoBo#l napameTp ABIAETCH, UCXONA U3 MHOPAKPACHHX HAOIWIEHUN,

1 1/2

- 2
6onblme uem 200 xam cM cex rpazn, yKasuBad Ha TO UTO TeIlio-

- -] -1
IIPOBOOHOCTE fABiIfAeTca MeHee 10 Kal cM cCcek Trpan. KacarenbHas

xi



TIOTepA MaTepuana fABIAeTcA 6ONble 2 X 10-3. HecmoTps Ha mpucy-
CTBUE HECKOJBKUX NPOTUBOpeuunit, HAGNIWIEeHUA CWJIBHO HAMEKaKwT Ha

POCT CpeIlHEell TeMIeparyph HAPKOCTH C NOJIWHOM BOJHH, YKa3HBaf HA ‘
SHAUUTENbHH BKIaL W3JIYUEHHUS B HONIOBEPXHOCTHYW TEIJIONPOBOIHOCTD.
Bce 8Tu 3aKIN0UEHUA COBMECTUMH C TuUnmoTes30# urto srunut Mepxypud
ABNIAeTCHA QPUINUECKN OUEeHDb CXOIHHM C JIYHHEHM.
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THERMAL MODELS AND MICROWAVE TEMPERATURES
OF THE PLANET MERCURY

David Morrison
1. INTRODUCTION

The discovery by Pettengill and Dyce (1965) at Arecibo Observatory that
Mercury is not in synchronous rotation has led to a period of renewed interest
in the physical nature of the planet. The unexpectedly high microwave tem-
perature observed near inferior conjunction at 3. 75-cm wavelength by
Howard, Barrett, and Haddock (1962) can now be understood. At the same
time, observations of a microwave phase effect have been reported at several
wavelengths, and infrared measurements of planetary surface temperature
are also within present capabilities. This report attempts to apply simple
models to the thermal behavior of Mercury and to use these together with the
considerable body of available data to evaluate some physical properties of
the planet. Partial results from this investigation have been presented by
Morrison and Sagan (1967, 1968) and Morrison (1968a).

The radar observations (Dyce, Pettengill, and Shapiro, 1967) indicate
that Mercury rotates in a direct sense with a sidereal period of 59 £ 3 days.
Optical studies (McGovern, Gross, and Rasool, 1965; Chapman, 1967;
Camichel and Dollfus, 1968; Smith and Reese, 1968) suggest that the rotation
period is exactly 2/3 of the orbital period, or 58.646 days; this conclusion
is also supported by studies of the stability of tidal locking (Colombo, 1965;
Liu and O'Keefe, 1965; Colombo and Shapiro, 1966; Peale and Gold, 1965;
Goldreich and Peale, 1968). With this rotation period, the solar day on

Mercury is 176 days long, equal to two orbital revolutions and to three

This work was supported in part by grant NGR 09-015-023 from the National
Aeronautics and Space Administration,



rotations. In addition, two solar days on Mercury are approximately equal
in length to three synodic periods and to one terrestrial year, a coincidence
largely responsible for the erroneous 88-day rotation period deduced from
visual observations in the past (see Cruikshank and Chapmé.n, 1967; Camichel
and Dollfus, 1968). With the fundamental iaeriod of insolation equal to 176
days (1.52 X 107 sec) and a thermal conductivity similar to that of the Moon,
the thermal skin depth on Mercury will be on the order of 10 cm, so that
observations of the phase effect at microwave wavelengths that also arise at
depths of tens of centimeters constitute a powerful tool for investigating
thermal properties of the layers of the subsurface that experience a signifi-
cant diurnal temperature variation. Following the suggestion of Johnson

(1968), we shall call this part of the planetary subsurface the epilith.

Spectroscopic investigations by Bergstralh, Gray, and Smith (1967) and
by Belton, Hunten, and McElroy (1967) have established that any atmosphere
that Mercury may possess is too tenuous to have a significant effect on the
temperature, a conclusion also reached on photometric grounds by Sagan
(1966). In the absence of an atmosphere, the temperature in the epilith can
be found as a function of time and depth by a solution of the one-dimensional
heat-conduction equation, once the periodic variation of insolation and the
thermal properties of the subsurface material are specified., Gary (1967)
and Belton et al. (1967) have done this for a sinusoidal variation of the
insolation during the daylight hours. Because of the high orbital eccentricity
of Mercury, however, any point on the surface experiences an insolation that,
while periodic with period 1.52 X 107 sec, is not sinusoidal and may differ
markedly from the insolation at points at other planetary longitudes (see Soter
and Ulrichs, 1967). The eccentricity enters in two ways. First, the varia-
tion in distance from the Sun produces a solar '""constant'' that varies by more
than a factor of 2 from perihelion to aphelion. There thus exist longitudes on
Mercury where the insolation is greater when the Sun is only 30° above the
horizon than when it is overhead. Second, the changing orbital angular veloc-
ity causes the apparent speed of the Sun across the sky to vary; near peri-

helion the angular velocity of revolution actually slightly exceeds the angular



velocity of rotation, and the apparent planetocentric solar motion becomes
retrograde, At some points on the planet, the Sun has two risings and two
settings each solar day. The two effects of the eccentricity reinforce one
another, with the largest flux coming at a time when the Sun is practically
stationary and the smallest flux when the angular rate of the Sun across the
sky is largest. The resulting variations in total heating are very great; the
two longitudes (180° apart) that see the Sun overhead at perihelion receive
more than twice the total energy per period than the longitudes 90° away
receive, where the Sun is always small and rapidly moving while near the

zenith.

Since the heat budget varies with planetocentric longitude, so will the
temperature structure. These variations should be apparent in observed
infrared and microwave temperatures. It is therefore insufficient to con-
sider the observed temperatures as a function of only one celestial mechan-
ical variable, the phase angle, as has been done for other planets (see, e. g.,
Pollack and Sagan, 1965). In this report, the microwave and infrared
brightness temperatures are given as functions not only of local time on
Mercury (as measured by the phase angle @) but also of the position of the
sub-Earth point on the planet, as specified by the heliocentric longitude n.
This choice of a second variable eliminates the ambiguity in the analysis of
Mercury by Vetuchnovskaya and Kuzmin (1967), who use radius vector for

the second variable.

In this report, I discuss the numerical computation of surface and sub-
surface temperatures and of the corresponding disk-averaged radio bright-
ness temperatures for a range of physical models for the epilith. Thermal
conductivities that incorporate a radiation term are included. The predic-
tions of these models are then compared with the existing data. Of course,
numerical models such as these are possible only for an idealized planet,
and the results will not necéssarily reproduce the behavior of the real planet.
The plausibility of the basic assumptions can be estimated, but basically
their justification must lie in the ability of the models to reproduce the
observations. There is no assurance that a model that does reproduce the

observations is a unique or necessarily a realistic description of the planet.



But within these restrictions, the construction of idealized models is a
powerful tool for interpreting existing data and for indicating crucial obser-
vations that need to be made in the future, and the models described below

do seem to offer valuable insights into the nature of the Mercurian subsurface.



2. COMPUTATIONAL TECHNIQUES

2.1 Thermometric Temperature Structure

In all the models I have computed, the subsurface material of Mercury
(down to the depth of penetration of the diurnal thermal wave) is assumed to
be horizontally and vertically homogeneous. Because the thickness of the
layer involved in the diurnal temperature cycle is much less than the radius
of the planet and also, it is assumed, much less than the radius of curvature
of typical surface topography, the temperature structure is taken to be hori-
zontally uniform, and all energy transport is along the normal to the surface.
Since the surface itself is assumed spherical, the angle of incidence of solar
radiation is a known function of the planetocentric coordinates of a surface

point and of the orbital position of the planet.

Consider a subsurface material characterized by a density p (g cm—s), a
specific heat capacity c (cal g—l deg-l), and a thermal conductivity
K(T) (cal sec"1 c:m_2 deg—l). With the assumption of plane-parallel geometry,

the heat-conduction equation in the material is

0 0 9T
PC@?*&[K“)-&] - (1)

We neglect any possible sources or sinks of thermal energy in the subsurface
(cf. Walker, 1961). We shall consider only a slab of depth X, where X is
large enough that the time variation of T(X) is negligible. The boundary

condition at X is

k() (&) =7, , (2)
ox /_ _ 0
x=X
where the flux FO may be due to energy conducted upward from hotter regions

below. At the surface, the boundary condition is



K(T)(—S—E—) = EMoTho - - A (3)
x=

where ¢ is the Stefan- Boltzmann constant (1. 35 X 1012 cal em™2 cleg_4 sec—l),

A is the bolometric albedo, and I{t) is the time-variable insolation. The
integrated radiometric emissivity E(T) is found from the monochromatic

emissivity by the relation

E(T)=

o0
1
y) f Eva(T) dv , (4)
cT 0

where BV(T) is the Planck function.

The homogeneous, plane-parallel heat-conduction equation with these
boundary conditions was solved analytically 20 years ago under the sim-
plifying restrictions of temperature-independent conductivity and daytime
dependence of insolation on time that was sinusoidal (Wesselink, 1948;
Piddington and Minnett, 1949; Jaeger, i953). More recently, Muncey (1958,
196 3) has obtained a solution for the case in which conductivity is linearly
dependent on temperature. However, it is most profitable to obtain numerical
solutions to the heat-conduction equation by use of a digital computer, and it
is this approach that has been applied recently to the Moon (see, e. g.,
Linsky, 1966). The numerical approach permits solutions involving complex
variations of thermal properties with temperature and depth, so that the
choice of models is not limited by the thermal parameters that can be incor-

porated.

‘'The dependence of the thermal conductivity on temperature is not well
known for materials that might be expected to make up the subsurface of
Mercury. The primary temperature effect is, however, known to be an
increase of conductivity at higher temperatures due to the transport of energy

by radiation as well as by ordinary contact conduction. When energy transport



in the Earth and Moon has been dealt with, conductivities have been considered
that vary as the first, second, or third power of the temperature (see, e. g.,
MacDonald, 1963; Linsky, 1966; Troitsky, 1967; Troitsky, Burov, and
Alyoshina, 1968). To represent the range of temperature dependence that

may apply, I have considered the following two forms:

1) Temperature independence: K = KO
2) Temperature-cubed dependence: K(T) = KO + BT3.

For these two cases, the heat-conduction equation becomes

oT _ 9T :
Pest - Ko 2 (5)
ox
2 2
0T _ 3,07 T 2{0T
pc 5t (KO + BT )—8—;-2— + 3BT (——8X> . (6)

Since equation (6) reduces to equation (5) in the case that B = 0, the tempera-
ture-independent models are considered in the following to be a special case

of the temperature-cubed dependence of conductivity.

Equation (6) can be solved numerically when written in finite difference
form. Letus consider a time increment At and a depth increment Ax, with
n
T
m

ferences, equation (6) becomes

= T{x=m Ax, t= n At). Then, with the use of central and forward dif-

3
oo L)k + BT (| T, - 2TR + TP
m m 0 m m+l m m-1

3 n 2 2 n o n o2
+ [Z B(Tm) ][(Tiﬁl) - ZT1'r1+lr]:'rr1—l * (Tm-l) }} » (7)

where

At

C ——————————
pc(ax)’

1l



In order to ensure stability of the numerical solution against perturbations,
the coefficient K- C must be less than 1/2 (Munro, 1964). The temperature
at the surface, T., is found when the upper boundary condition (3) is written

as

3
n n n n n n n
K -T, + 4T -3T, . T+ T, T - T,
0 2(Ax) 2 Ax
n4
= E(Tg)a("ro) - (1 -AYI(t) . (8)

This equation is solved numerically by Newton's method. As shown by
Walker (1961), any fluxes that might originate from internal heat sources
are negligible in comparison with the diurnal fluxes produced by the varying
insolation. Therefore, a lower boundary condition of zero flux is assumed.
The temperature of the bottom layer considered in the calculations is
adjusted to give a zero net flux (averaged over one diurnal cycle) at all
levels in the subsurface, and the accuracy with which this condition is ful-
filled throughout the subsurface is a measure of the convergence of the

numerical solution to a steady state.

For the temperature-independent case (B = 0), the diurnal period is
divided into 176 time intervals of 8. 6 X 104 sec. The depth increment Ax is
then calculated directly from the requirement that K- C = 0. 4, and the maxi-
mum depth considered is X = 30 - Ax. Where B > 0, the depth scale is cal-
culated as above by use of K(T) evaluated at T = 350°K. To ensure stability
over the entire temperature range, the time increment is then decreased so
that K- C is less than 0.4 for a temperature of 710°K, which is the highest
value ever reached on Mercury. With these values for Ax and At established,
the computations are continued through five or more diurnal cycles, the
temperature being adjusted at depth X at the end of each cycle as needed,
until the temperatures at each depth throughout the cycle converge to their

steady-state values.



The insolation I(t) is a function of both planetocentric and orbital coord-
inates. The orbital position is specified by the he1i04centric longitude n; the
planetocentric coordinates are longitude and latitude. In all the computations
presented here, the obliquity of the axis of rotation of Mercury is taken to be
zero, a result consistent with, but not demonstrated by, the radar data
(Dyce et al., 1967). If we treat the Sun as a point source and define LHA(t, £)
as the local hour angle (I.LHA) of the Sun at latitude £, the insolation is given
by

I

I(t, £, 9) = —'——9—'2-' cos (¢) cos [LHA(t, £)]  for cos (LHA) =0,
[x(t)]
=0 for cos (LHA) <O |, (9)

where IO is the solar constant (1. 388 X 106 erg c:m-2 sec-l) and r(t) is the
radius vector in astronomical units. The local hour angle is found from the
axial rotation rate 2= (6m/1.52 X 107), the orbital angular positionmn, and

the longitude
LHA(t, £) = (t - £)2 - [n(t) - n(t)] + £ . (10)

The quantities r(t) and n(t) are tabulated in the American Ephemeris and

Nautical Almanac.

I have used the CDC 6400 computer of the Smithsonian Astrophysical
Observatory (SAO) to find the thermometric temperature in the subsurface
as a function of n for particular points (¢, £) on the surface of Mercury, using
a variety of assumed thermal and photometric parameters. In the case of
temperature-independent conductivity, I have checked my results for the
surface temperatures against those found by Soter and Ulrichs (1967), who
used a finer grid of time and depth increments and also allowed for the finite
angular size of the Sun. The agreement is excellent, verifying the adequacy

of my more economical computing procedures.



2.2 Radio Brightness Temperatures

Since thermometric temperatures have not been measured on Mercury,
it is necessary to use the temperatures described above to compute radio
brightness temperatures at microwave wavelengths to be compared with
existing data. From a temperature distribution T(x), we wish to find TR()\, 0),
the radio temperature at wavelength X as seen at an angle © from the normal

to the surface.

The angle 0 is the direction of the ray in vacuo. The ray direction 6/ in

the subsurface is given by Snell's Law:

sin 6/ =

where n(\) is the index of refraction for the radio wave in the subsurface.
Using the Rayleigh-Jeans approximation, we have the equation of radiative

transfer in a solid:

0
TR(x,e) =[1 - R(\)] J' T(x) exp['kék)x] (kg‘)> dx , (11)
0

where k(M) is the absorption cross section per unit volume (cm-l), R(\) is
the surface reflectivity, and p = cos 8’, In order to evaluate the integral (11)
from a finite set of computed temperatures Tm’ we sum the contributions
from each layer, assuming a linear temperature gradient within the layer.
For the layer extending from X o to X integration of equation (11) by

1
parts illustrates the dependence on the temperature gradient:

/ -kxm_l -kxm
TR(m) = (1 - R) Tm—l exp )" Tm exp m

(&) ,:exp (—kxjﬂ—l> - exp (kf mﬂ . (12)
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If m=2 and x) = 0, and we let x, approach infinity, equation (12) reduces to

2
the familiar second Eddington-Barbier relation.

To obtain the total brightness temperature TR’ the individual contribu-
tions of equation (12) are summed over M layers. Below the Mth level, the

temperature is taken to be constant at T Then T is given by

M’ R

, v |
Tp=(1-RJT + (-L;(-) Z _Tx_z_..:_;r_n_i [exp('kim-l) ] exP<-ixm)jl;

= 1 m-1

(13)
This equation is used to compute the individual radio temperatures that must
then be combined to reproduce the average brightness temperature of the

unresolved planetary disk.

2.3 Digk-Averaged Temperatures

In determining the way to combine individually computed brightness
temperatures to give disk-averaged temperatures, I neglected the inclination
of Mercury's orbit to the ecliptic. Thus, the subterrestrial and the subsolar
points are always taken to lie on the equator of Mercury. Since the orbital
inclination is only 7°, errors introduced by this simplification are less than

1/4 7°) = 0.1% and so are not significant.

order (1 - cos
For convenience in visualizing the geometry of the situation, we may
consider Mercury fixed at a value of n and examine its appearance from a
moving Earth. The phase angle @ is the planetocentric angle between Sun
and Earth, It is clear that the subterrestrial longitude on Mercury has a
local hour angle of the Sun equal to ®. Further, we know the relationship at
any time amongn, LHA, and £ [equation (10)]. We can readily eliminate the
variables LHA and £ and express the temperatures in terms of the celestial
mechanical variables (n, ®), which are the most convenient variables to

associate with the observations.
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In constructing thermal models of Mercury, I have computed tempera-
tures as a function of time for the grid of planetary coordinates spaced 30°
apart in latitude and longitude. From the T(x) found at each of these points
at a given time, three radio brightness temperatures are computed, corres-
ponding to angles of view of 0°, 30°, and 60° from the local normal. These
directions all lie in a plane parallel to the ecliptic. The temperatures ’at
each longitude are averaged over latitude, the points at latitudes 0°, 30°,
and 60° being weighted in the ratio of the projected areas of the strips of
which they are the centers (0.329:0.556:0.115). The numerical computation
of disk-averaged temperatures is then reduced to finding the weighted average

of the temperatures at the subterrestrial longitude £ , at normal incidence, at

0
the longitudes £, * 30° at a 30° angle of incidence, and at longitudes IO + 60°
at a 60° angle of incidence, all of which are already computed. The appro-

priate weights are (0.096:0.266:0.276:0.266:0.096).

The computational procedure described above requires that a complete
temperature structure be computed for 18 individual points on the surface of
the planet. It is clear, however, that the three points computed at each
longitude will have exactly the same insolation cycle, except for the cos ¢
term in equation (9). It therefore seems worthwhile to look for an intermed-
iate latitude where the temperature will always be equal to the weighted mean
of the temperatures at latitudes 0°, 30°, and 60°. If this latitude does not
vary with wavelength of observation or with the assumed parameters of the

model, its use will cut total computation time by more than a factor of 2.

The total energy incident on the surface is proportional to cos ¢. If
1/4, the latitude d)o,

where the temperature is equal to the latitude-averaged mean of all the

we assume that all the temperatures scale as (cos ¢)

temperatures, is given by

(cos ¢)1/4

(cos 4’0)1 /4 . Jdisk (14)

j cos ¢ cos £ dw
disk

cos ¢ cos £ dw

12



When the solid angle dw is written in terms of d¢ and df, equation (14) reduces

to

/2
J (cos $)2/% ao
(cos ¢0)1/4= O-n-/z . (15)
f (cos $)% db
0

Evaluation of equation (15) gives ¢0 = 33°,

From an examination of the computed temperatures for a wide variety of
models and wavelengths, I concluded that temperatures found for
¢0 = 30° £ 2° agree within 0. 5% at all times with the latitude-averaged temper-
atures. An examination of equation (14) indicates that if <1>0 = 30° rather than
33°, the power-law dependence of the temperature is slightly stronger than
(cos ¢)1 /4; in other words, it appears that the temperatures at higher latitudes
are somewhat hotter than would be expected from the idealized (cos <1>)l /4
law. In any case, the actual brightness temperatures computed for 4)0 = 30°
and 33° differ by less than 1%, so that it matters very little which is used.
In computing a grid of models, I have substituted the temperatures calculated

at ¢O = 30° for those obtained by actual averaging over latitude.

2.4 Infrared Brightness Temperatures

Brightness temperatures have been measured for Mercury in the 8- to
14-p infrared window as well as at microwave frequencies, and I have com-
puted infrared temperatures from the models to compare with these data.
Since the opacity of the surface materials of Mercury is almost certainly
very great at micron wavelengths, I have taken the effective emitting region
in the infrared to be the actual surface. The brightness temperature is then
computed from the surface thermometric temperature by multiplying by the
fourth root of the emissivity, although for greater accuracy, the nth root,

where n= 1.439/\T, should be used at temperatures below 300°K for this
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spectral band (see Morrison, 1968b). Since only center-of-disk temperatures
are given, possible dependence of emissivity on direction (see Sinton, 1962)

does not introduce any additional error.

2.5 The Computer Program

I have written a FORTRAN IV computer program to execute all the com-
putational steps described above. In Figure 1, an outline flow diagram of

this program is given.

MERCURY, the main control program, begins the calculation of each

model by reading the values of the parameters (Kpc)gééz and R350 defined
at 350°K. Here, R, is the ratio B - (350)3/K0, where K, is the

temperature-independent contribution to the conductivity., Because longitudes
separated by 180° on the planet undergo identical thermal cycles, it is neces-
sary to compute temperatures only for £ = 0°, 30°, 60°, 90°, 120°, and
150°. The diurnal cycle is two orbital periods in duration, so that two
temperatures at each of these longitudes are associated with eachn. The
second of these temperatures is assigned by the program to longitude

£+ 180°, so that the resulting temperatures are unique functions of 1 and £,

with £ running from 0° to 330°.

Subroutines ORBIT, CONDUCT, and PHOTON compute the thermometric
temperatures T(x) at each value of 1 and £. ORBIT generates the insolation
given by equation (9). CONDUCT f{inds T(x) on the assumption of temperature-
independent conductivity [K = K(T = 350°)] ; PHOTON then takes this solution
as a starting point for the determination of T(x) by equafions (7) and (8).
Subroutine RADTEMP converts the thermometric temperatures to radio
brightness temperatures at seven wavelengths: A = 1.2 mm, 3.4 mm,
8.0mm, 1.9 cm, 3.75 cm, 11.3 cm, and 21. 0 cm; it also finds the equa-
torial infrared brightness temperature. Function subroutine RADIO computes

TR for each value of A and 8, using equation (10). These temperatures are

14



pemmeefd  Control logical flow for all calculations. Specify

MAJOR LOOP: ALL COMPUTATIONS FOR ONE THERMAL MODEL

Program MERCURY

values of thermal and electrical parameters,

Compute I(n,J), the insolation as a
function of heliocentric longitude
GO THROUGH LOOP and planetary longitude.

SIX TIMES, OMNMCE FOR

: Subroutine ORBIT
]

EACH LONGITUDE

Subroutine CONDUCT
Solve heat-conduction equation without
e radiative term. After six cycles, obtain
thermometric temperatures T(n,x,J), where
x 1s the depth below the surface.

'

Subroutine PHOTON

Starting from T(n,x,J), solve heat-conduction
< equation with temperature~dependent conductivity.
After 5 to 10 cycles, obtain new T(n,x,J).

Subroutine RADTEMP Function RADIO
From T(n,x,J), determine brightness N ) .
ma— temperatures at 8 wavelengths for 3 H Solve the.equatlon of.rad1at1ve
@i 2ngles of emergence of the radiation: |g transf?r in the Rayleigh-Jeans
TRO(n,J,A) for normal rays; TR3(n,J,A) :approximation to obtaln'brlght—
at 303 and TR6(n,J,A) at 60 degrees. ness temperature from given T(x).
Subroutine PHASE
. = Determine the disk-averaged brightness temperature
TB(n,?,x), as a function of phase angle (%) and of
M1 1, by combining appropriate weighted values from"
arrays TRO, TR3, and TR6.

Subroutine POFT
Subroutine OUT Print a contour map of the
Control printing of results. o » brightness temperature from

given values of TB(n,%).

? ] * 1
ONE LOOP FOR

EACH WAVELENGTH
Subroutine SORT

Do bubble sorting as needed.

Figure 1. Flow diagram of the main program and subroutines
used to calculate Mercury models.
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combined by subroutine PHASE to give disk-averaged temperatures expressed
as a function of (n, ®). Using subroutines OUT, POFT, and SORT, the pro-
gram presents the results of these calculations in the form of contour maps
giving the brightness temperature in the (n, ) plane. For each model, eight

maps are generated, one for each of the wavelengths considered.

This computer program was written for SAO's CDC 6400 computer. On
this machine, with the use of the SCOPE 3. 0 compiler, the central processor

computation times for a typical model have been determined to be the follow-

ing:
CONDUCT 15 sec
PHOTON 80
RADTEMP and PHASE 10
All others 15
Total time 120 sec

This total time is for a single latitude; if the computations are carried out

for three latitudes, the total time is increased to about 315 sec per model.

2.6 Computational Errors

Numerical computation of models of Mercury using finite-difference
techniques necessarily introduces some random errors into the resulting
brightness temperatures. In a number of test cases, I have estimated the

magnitude of the uncertainty in the numerical results.

The errors in the insolation introduced by subroutine ORBIT are negli~
gible. Thermometric temperatures found by subroutine CONDUCT have
errors of less than 1%, but these increase when temperature-dependent
conductivities are considered by PHOTON. The largest uncertainties are
associated with the upper boundary in CONDUCT and with the lower boundary
in PHOTON; in the latter case, the errors may reach 2%. It does not seem
worthwhile, however, to use the extra. machine time required to reduce these

errors below the values quoted.
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Radio brightness temperatures are computed very accurately when the
effective depth of emission (k/p) is several times fhe depth increment Ax,
as can be seen from equation (12). However, the millimeter radiation arises
primarily in the upper one or two layers for most models, and here the
assumption of a linear gradient within each layer introduces some problems.

These errors are still probably less than 2% in the brightness temperature.

A typical error introduced by the use of temperatures computed at
4)0 = 30° as a substitute for direct averaging over latitude is less than 0. 5%.
Averaging over longitude with use of a 30° grid will introduce errors of up
to 1%. Of course, the center-of-disk infrared temperatures are as accurate

as the surface thermometric temperatures, since no averaging is involved.

In the final presentation of the numerical results as contour plots, a
certain amount of smoothing takes place, which tends to reduce the effects
of small random errors in the temperatures. I conclude that the errors in
the plotted brightness temperatures are generally less than 2% for the
centimeter wavelengths but may be as high as 5% at the shortest radio

wavelength, A = 1.2 mm.
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3. SPECIFICATION OF NUMERICAL PARAMETERS

The computer program outlined in the preceding section requires that
numerical values be given for a number of physical properties of the epilith
of Mercury. To avoid the necessity for a many-dimensional grid of models,
I have adopted standard values for most of these parameters and have com-
puted models with only the contact thermal conductivity and the radiative

conductivity allowed to vary.

3.1 Photometric Properties

From a review of the observational data, de Vaucouleurs (1964) finds a
visual Bond albedo of 0. 058 and notes (see also Sagan, 1966) that the varia-
tion of albedo with wavelength is very similar for Mercury and for the Moon.
Since the ultraviolet and infrared phase curves are unknown, de Vaucouleurs
is unable to specify a value for the bolometric albedo. In their thermal cal-
culations, Soter and Ulrichs (1967) adopt a bolometric albedo equal to the
visual albedo of 0. 058, while Belton et al. (1967) use the value of 0.23 by
analogy with the high lunar albedo employed by Jaeger (1953). Linsky (1966),
using the data given by Harris (1961), finds a bolometric albedo for the Moon
of 0.12. For these calculations, I have adopted an albedo of 0. 10, similar
to that of the Moon and consistent with the existing measurements for Mercury.

1/4

The temperatures scale with the albedo as (1 - A) , so the change in tem-

perature is only 1% for an albedo differing by 0. 05 from the adopted value.

Total-reflectance measurements of a number of terrestrial igneous rocks
in a wide range of particle sizes have been made in the wavelength range 0.5
to 22 p by Hovis and Callahan (1966). To the degree that these substances
may be considered representative of the surface of Mercury, these data can
be used to determine the radiometric emissivity. Photometric and polari-
metric evidence indicates that the bulk of the surface material on Mercury

is granular or dusty; this fact simplifies the computation of emissivity, since
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the data of Hovis and Callahan indicate that the peculiar spectral features of
rocks of different composition show most strongly in solid samples and
become much less prominent in pulverized samples. Therefore, I have
chosen to consider only two of their spectral reflectance curves, both for
mixed samples of pulverized rock: one of size 1 to 2 mm and one of less

than 0. 038 mm. The most prominent feature in the spectra of these samples
is the broad absorption by water of crystallization or water of constitution
near 3 p. Sinton (1967) has observed this band in reflection spectra of Mars,
where its depth is comparable to that observed in these terrestrial samples.
Whether it exists on other planets is not known, but its absence would change
the values of the radiometric emissivity only for temperatures above 600° K.
Applying equation (4) to these data, I have obtained the emissivities illustrated
as a function of temperature in Figure 2. The monochromatic emissivities
were assumed constant beyond 22-u wavelength., For the models presented
in this report, I have used the constant radiometric emissivity of 0. 94 indi-

cated in Figure 2 as being appropriate for small particle sizes.

1.0 T T T T T T
>_
=
= <0.038 mm
w
© o9l —
=
Lt
o
;0_: [-2mm
w 0.8 —
=
o
o
<
o

0.7 ] ] 1 I | L

200 400 600

TEMPERATURE {°K)

Figure 2. Radiometric emissivities of pulverized terrestrial rocks,
computed from the reflectance measurements of Hovis and
Callahan (1966). Two distributions of particle sizes are
shown,
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A similar calculation of the average emissivity in the 8- to 14-p atmos-
pheric window gives a value of 0. 94, practically independent of either tem-
perature or particle size, and this is the value used to convert thermometric
surface temperatures to infrared brightness temperatures. These brightness
temperatures are primarily sensitive only to changes in the ratio of these two

emissivities, not simply to the 8- to 14-p emissivity.

3.2 Bulk Properties

The density p (g cm-3) and the specific-heat capacity c (cal g-l deg-l)
enter the calculations primarily through the thermal parameter (Kpc)—1 /2.
The subsurface density on Mercury can be expected to fall between 3.0, a
value typical for solid terrestrial rock, and the value of 0.6 to 1.2 recently
found for the uppermost layer on a lunar mare (Christensen, Batterson,
Benson, Chaote, Jaffe, Jones, Ko, Spencer, Sperling, and Sutton, 1968;
Campbell, Ulrichs, and Gold, 1968). On the Moon, the density increases
with depth from these low values to a limiting value of about 2. 8 tens of
centimeters below the surface, and a density of 1.5 g crn'-3 is considered
characteristic of the upper 10 cm of the epilith (Jaffe, Batterson, Brown,
Christensen, Gault, I.ucas, Norton, Scott, Shoemaker, Sutton, and
Turkevich, 1968; Scott and Roberson, 1968). For Mercury, I assume a

constant density of 1.5 g cm 3. Almost all abundant minerals have specific-

heat capacities near 0.20 cal g"1 deg“1 (International Critical Tables, 1933),
3

so this value is adopted for Mercury. The product pc is then 0.30 cal cm’
-1
deg .

3.3 Electrical Properties

The only experimental measurements of the electrical properties of
Mercury are the radar cross sections of about 6% observed at wavelengths
from 12.5 to 68 cm (see Pettengill, Dyce, and Campbell, 1967). For a
smooth surface, the corresponding value of the relative dielectric constant e
is 2.7; if we employ a directivity factor g = 1.1 as suggested for the Moon

(Pettengill, 1965), then ¢ = 2.9. These dielectric constants are similar to
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that of the Moon but are somewhat smaller than those of Venus, Mars, and ter-
restrial rocks. Loose, dry sand, however, does have a dielectric constant of
about 3 (Pettengill, 1965). Assuming the surface of Mercury behaves as a pure
dielectric with dielectric constant e = 2.9 at the wavelengths of interest, I
have set the reflectivity R of equation (10) equal to 0. 060 and the index of

refraction equal to 1. 7 for all radio wavelengths.

To calculate microwave temperatures from thermometric temperatures,
we must also specify the absorption cross section per unit volume k (cm_l).
For most geochemically abundant materials, k can be expressed as ko/)\,
where ko is a constant that depends on the composition and porosity of the
material. Pollack and Sagan (1965) have discussed the dependence of opacity
on composition for a wide range of minerals and have found variations of
more than 2 orders of magnitude. The value of k of 0.10 found from
microwave studies of the Moon (Weaver, 1965) is typical of loose, dry
mineral samples and is the value adopted for Mercury. To a good first
approximation, a given phase effect can be matched by models employing a

range of thermal properties, so long as we also allow k., to vary in such a

way that the ratio of electrical and thermal skin depths (Osee Section 3. 4
below) is constant. This ambiguity does not exist for infrared observations,
for which the radiation is assumed to originate at zero depth, but it does
limit our ability to determine uniquely the thermal properties of Mercury

from microwave observations alone.

3.4 Thermal Properties

With all the preceding parameters specified, the independent variables
that specify the models are only the temperature-independent thermal con-
ductivity K0 {cal cm_l sec-1 deg_l) and the coefficient B of the temperature-
dependent conductivity [see equation (6)]. For convenience, the independent
variables actually used in the computation of thermal models were

Y350 = (Kpc)—l/2 (ca,l“1 cm2 sec1 I2 deg) and R = B'T3/K0, both evaluated
at T = 350°K.

350
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For comparison with microwave temperatures, the models with no radia-
tive term in the conductivity are more conveniently characterized by a param-
eter that does not depend for interpretation on the choice of microwave opacity.
The thermal skin depth Lt is the depth at which the amplitude of the first har-
monic in a Fourier analysis of the temperature is reduced to 1 /e of its surface
value, and the electrical skin depth Le is the distance in which the energy of
an incident electromagnetic wave is damped to 1 /e of its incident value. The

ratio of these depths is the dimensionless parameter 6, given by

L

5 === = 4.56 X 1074 (%§5> v o (16)
t 0

The parameter that we may wish to use instead of y is then &/)\ (cm_l); with
our choice of numerical values, this is
= -3 -1
6/A=1.37X 10~ y cm (17)
In the following sections, the variations of microwave temperature will be

presented as a function of & /\.

Following Linsky (1966), we can interpret the value of the radiation
coefficient B in terms of the mean spacing s between opaque radiating parti-

cles in the subsurface:

B=4Eocs |, (18)

where E is the infrared emissivity, and o is the Stefan-Boltzmann constant.
A similar expression can be derived from the equations of radiative transfer
in a continuous gray medium of opacity K; if we consider an elementary vol-
ume several infrared optical depths below the surface, where the radiation
field is nearly isotropic, we obtain

1% o
3 Kp

B = (19)
Except for the factor 3E /4, this result is identical to the preceding when the
length s is identified with the photon mean free path (I{p)~1. Thus, a deter-
mination of Y350 and R350 can lead to values for the thermal conductivity

and the thermal photon mean free path in the subsurface of Mercury.
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4. RESULTS OF CALCULATIONS

4.1 Contour Plots of TB (®,n)

As described in the preceding sections, each model is defined by specify-
ing values for parameters Y350 and R350; contour plots of brightness tem-
perature as a function of phase angle and heliocentric longitude are then
generated. A comparison of preliminary models with the observations at
1.9 cm (Morrison and Sagan, 1967) and at 3. 4 mm (Morrison, 1968a) indicates

1 2

that approximate fits to the data are obtained with vy >~ 500 cal = cm

350
secl/2 deg and R350 =~ (0., I have therefore chosen for presentation those models
with Y359 = 250, 500, and 1000 ca,l'-1 cmz secll2 deg. In Figures 3 through

8, contour plots are given for R = 0.0 at wavelengths of 0. 12, 0.34, 0.80,

1.90, 3.75, and 11. 30 cm. Figiig 9 gives a similar plot of the center-of-
disk infrared brightness temperature. Models with R350 # 0 will be pre-
sented in a later section. Phase curves for wavelengths intermediate between
those given can easily be found from the plots by linear interpolation between

phase curves obtained for the bracketing wavelengths.

It is apparent from these figures that for a given electrical skin depth,
and hence for a given physical depth, the amplitude of the temperature varia-
tion increases with decreasing thermal parameter Y350 It is for this reason
that, in this report, the commonly employed term ''thermal inertia' is not
used for the reciprocal of the thermal parameter. This term was introduced
when only the amplitude of the surface temperature variation was considered,

"inertia'' implies a damped temperature cycle. But in the

where a large
subsurface, increasing this inertia actually increases the temperature varia-
tion, so that the term thermal inertia is confusing. This term is therefore

better not used.
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In order to obtain a particular phase curve from one of the contour plots,
we use the phase angle € and heliocentric longitude n given as a function of

date in the American Ephemeris. The path of the planet across the plot is

then an irregular diagonal line from upper left to lower right, and the tem-
peratures can be read directly as a function 6f time or of ® from the inter-
sections of this line with the temperature contours. In general, the phase
curve for one apparition will differ from that for another. However, Klein
(1968a) has pointed out that, because two solar days on Mercury are approxi-
mately equal to three synodic periods, at the end of three apparitions the
(®,n) curve will very nearly repeat itself. Thus, even though we should not
average data taken in successive synodic periods, it is usually satisfactory
to average with data taken three synodic periods (or about one terrestrial

year) earlier.

As we go from short to long wavelengths, the amplitude of the phase
effect decreases, but even at very long wavelengths it never approaches zero.
This is because with the 2:3 spin-orbit coupling, the heat budgets of different
longitudes are permanently unequal. Thus, the equilibrium temperature at
great depths will be higher at some longitudes than at others; with
Y350 = 500 caLl_l C1’1’12 sec1 /2 deg and R350 = 0. 0, this temperature varies
from 269° to 345°K with a 90° change in planetary longitude. Let us consider
the contour plots in Figure 8, where most of the diurnal temperature varia-
tion has been damped out. The peculiar shape of the contour lines in this
fignre can be understood if we follow one of the two longitudes for which the
Sun is overhead at perihelion, atmn = 80°. That point will be at the center
of the disk as seen from Earth at ® = 0°, near the maximum temperature on
the plot. After 44 days have passed and the planet is at aphelion with
n = 260°, this point will have rotated (-1/3) X (360°) in phase angle, to about
® = 240°. We note that the temperature maximum follows just such a path
in Figure 8. The characteristic zigzag shape of the contour lines is caused
by the small apparent angular rotation of the planet with respect to the Sun
(and hence to the Earth) nearn = 80°. 'Here the contours run nearly vertical,
while near n= 240°, when the apparent rotation is fastest, they have the

smallest slope. In addition to the point of maximum temperature that we
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have been following, there is a secondary maximum 180° away in planetary

longitude and therefore also 180° away in phase.

4,2 Microwave Behavior with Constant Conductivity

To compare the predictions of these models with those of previous
theories, we must consider the average variation of temperature as a func-
tion of phase angle alone. For this purpose, I have used the plots of Figures
3 to 8 to generate phase curves for the three apparitions of 1967. As an
example, the 1967 temperatures at a wavelength of 1. 90 cm are plotted in
Figure 10. Asymmetries in the curves and variations in shape and amplitude

from one apparition to the next are clearly present.

500 T T T T N T T T T T T

400

Ts (°K)

300

200

Figure 10. Model-predicted brightness temperatures at A = 1. 90 cm
during 1967. The data are taken from Figure 6 for three
values of Y350
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A Fourier analysis of curves such as those in Figure 10 leads to a quan-
titative description of these variations. The temperature as a function of

phase angle can be represented by the series

ﬁT(@): TO+Z Cn cos <-12018%- LlJn> , (20)

where the basic period is taken as three synodic periods, or 348 days, and
the phase angle is in degrees. We can associate several of the harmonics
with physically significant periods on Mercury. The main harmonic should
be at the synodic period of 116 days. There will also be an effect due to
varying distance from the Sun with a period of 88 days, and this will beat
with 116 days to produce a variation with period about 350 days, as noted in
the previous section. In addition, there is the effect of the permanently
hotter and cooler planetary longitudes. A given longitude is at the center of
the planet as seen from Earth at an average interval of 70 days, which is the
reciprocal of the difference of the sidereal rotational frequency of Mercury
and the orbital frequency of Earth. Thus, the average interval between hot
longitudes is 35 days, and the beat of this with the synodic period is 50 days.
Finally, we can expect a component at 58 days, the first overtone of the
basic synodic period and hence the third coefficient in a Fourier series
representation of the thermometric temperature variation at a point. We
shall examine the phase and the amplitude for the 1967 predictions of the models
for the Fourier components with these periods: 348, 116, 88, 58, 50, and
35 days.

The first term of the Fourier series, the mean temperature, depends on
the choice of y, since at the surface y determines the rate of cooling at night;
the larger is y, the greater the insulation and the more rapid the cooling of
the surface layers. In the absence of radiative conduction, the mean disk
brightness temperature is independent of wavelength. For these 1967 curves,
this temperature is 286°K at y = 1000, 295°K at y = 500, and 306°K at

2 ec1/2

y.= 250 cal_l cm s deg.
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The behavior of the most important harmonic, that with period 116 days,
is illustrated in Figures 11 and 12. The amplitude, shown in F‘igure 11 as a
percent of the mean temperature, decreases with wavelength, following a
simple exponential decline at 2 cm and longer. These curves are in good
agreement with those obtained by Gary (1967) from a scaling of solutions
originally found for the Moon (Piddington and Minnett, 1949; Weaver, 1965).
The phase lag (Figure 12) varies from a limit near -40° at long wavelengths
to a value of about -5° in the far infrared. In the absence of any phase lag
in the first harmonic of the surface temperature variation, the microwave

phase lag predicted from this lunar theory should go from 0° to -45°.
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Figure 11. Amplitude of the phase effect (116-day period) as a function
of wavelength obtained by Fourier analysis of the model
predictions for 1967.
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Figure 12. Phase lag of the phase effect (116-day period) as a
function of wavelength obtained by Fourier analysis
of the model predictions for 1967.

The first overtone of the synodic period is the second-most important
Fourier component. The variation with wavelength follows closely the log-
log plot given in Figure 11 for the 116-day component. For the model with
Y = 500 (and therefore 6§ /\ = 0. 68 cm_l), the amplitude varies from 9% at
1.2 mm to 2% at 11. 3-cm wavelength. The phase lag is essentially zero for
all wavelengths. The behavior of this overtone illustrates the rapid attenua-
tion with depth of the higher order terms in the diurnal variation of surface

temperature.

The components with an 88-day period and a 348-day period also show a
parallel decrease in amplitude with wavelength, from about 5% to 1%. The
phase lag at 88 days is 140° + 10°; at 348 days, it is 170° + 10°. The ampli-
tude of the 35-day component is only 3% + 1%, but it is approximately indepen-
dent of wavelength, consistent with its origin in the permanent differences in
temperature between hot and cool planetary longitudes. The beat of this term

with the synodic period is the third-most important harmonic component, as
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noted also by Klein (1968a) in his analysis of the 3. 75-cm phase effect. It
first increases with wavelength to a maximum of 7% at about 1 cm, then

decreases to 2% at 11. 3 cm.

This discussion confirms the presence of the harmonic components that
are expected from a qualitative analysis of Mercury's orbit and rotation period.
No other term in this Fourier analysis of the 1967 models has an amplitude

greater than 2%.

4.3 Effects of Radiative Conductivity

When R350 is allowed to take nonzero values, the heat-conduction prob-
lem becomes nonlinear. In order to preserve zero net flux averaged over
one diurnal cycle, the average subsurface temperature gradient must be
higher at night than in the daytime; the result is to raise the mean tempera-
ture in the subsurface with respect to that on the surface. Thus, mean
temperature increases with depth, approaching a fixed value several thermal
wavelengths below the surface. Consider the equatorial temperatures at the
hottest longitude. Figure 13 illustrates the variation of temperature with
depth where Y350 = 500 cal-l c1rr12 se(:1 /2 deg. The equilibrium temperature

at great depth at this position is shown in Figure 14 as a function of R and

350
Y350 Observationally, these increased thermometric temperatures appear

as an increase in mean brightness temperature with wavelength, approaching
a maximum value as 6 becomes much greater than unity. An increase of
this sort has been reported for the Moon (see, e. g., Linsky, 1966; Troitsky,
1967; Troitsky et al., 1968).

While the shape of the phase curve for Mercury also changes from its

constant conductivity form when R # 0, this change is small compared

350
with the general increase in the brightness temperatures with increasing

R35O' Figure 15 shows the mean brightness temperature as a function of

wavelength and of R obtained from a Fourier analysis of the 1967 prédic—

| 350 02 12
tions with Y350 = 500 cal * cm  sec deg. At wavelengths of 3.4 mm and

shorter, the temperatures are not altered significantly. Beyond A = 11. 3 cm,
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Figure 13. Equatorial thermometric mean temperature at a hot
longitude as a function of depth below the surface
for models having Y3545 = 500 cal"l cm?2 secl/2 deg

and values of R350 from 0.0 to 1. 0.
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Figure 14. Equilibrium equatorial thermometric temperatufe at
several thermal wavelengths below the surface at a
hot longitude, given as a function of Y350 and R3‘50'
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there is little further variation with wavelength. The temperature contour
maps at A= 1.9 cm and A= 3. 75 cm are illustrated in Figures 16 and 17 for

a range of R350.

380 |- R
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Figure 15. Mean radio brightness temperature as a function
of A and R for the 1967 predictjons of models
- 350 I 1/2
having Y350 = 500 cal~* cmé sec deg.

When the temperature~-dependent conductivity is specified by
V350 = 500 cal_l crn2 secl /2 deg, as in the models of Figures 16 and 17,
the amplitude of the 116-day phase variation is seen to increase somewhat
as R350 increases. However, when the amplitude is expressed relative to

the mean temperature, it is essentially independent of choice of R Thus,

we see that by evaluating the temperature-dependent conductivity :tsi(t)he
temperature of 350°K, we can preserve the definition of thermal skin depth
and of 6 previously found with the assumption of constant thermal conductivity.
In general, the phase curve obtained with a particular choice of Y350 and
R35O can be very closely approximated by taking the curve computed with
R350 = 0 and the same value of y and multiplying all temperatures by the

ratio indicated in Figure 15, thus extending the usefulness of the contour

maps given in Figures 3-9.
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Depending on the radio observations available, either 8/\ (evaluated at
T = 350°K) or R350,

discussion). In the usual case, the absolute calibration of a set of microwave

or both, can be determined (within the assumptions of this

observations has much more uncertainty than the relative temperatures that
define the phase variation. It is then possible to use this phase variation,
expressed in percent, to find 6 /X independent of both the absolute calibration
and the degree of radiative conduction. Alternatively, if it is possible to
make an observation with high absolute accuracy, then R350 can be found
without observing other points on the phase curve, if 6/\ is known. If&/\ is
not known, R,:,‘50 can still be determined from a single observation if it is
made near greatest elongation of Mercury, where the phase curves for differ-

ent values of 8 /N intersect.
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5. COMPARISON WITH OBSERVATIONS

5.1 Infrared Observations

Observations of Mercury through the 8- to 14-pu atmospheric window
have been made over half a century, but in only a very few cases has there
been any resolution of the disk. When the entire disk is measured in the
infrared, any flux from the dark side is unmeasurable in comparison with
the high flux from the hotter regions. Since the higher te'r'npera’cures.
represent near-equilibrium with the local insolation, the large infrared fluxes
are not dependent on subsurface conduction. Only observations made of
resolved parts of the night side of Mercury, uncontaminated by daytime

fluxes, are useful in determining the thermal properties of the epilith.

On June 21, 1923, Pettit and Nicholson (1923) obtained an uncalibrated
thermocouple reading of the 8- to 14-u radiation from part of the unilluminated
disk of Mercury. This observation has recently been discussed by Soter
(1966), who used an energy calibration from later observations by Pettit and
Nicholson (1936) and deduced a lower limit on the mean night-side tempera-
ture at the time of the observation of 180°K. Using Soter's description of
the circumstances of the observation, I have reduced these data without the
necessity of his retrospective calibration. Pettit and Nicholson obtained
readings on an arbitrary scale from both the illuminated and the unilluminated
parts of the planet in their 1923 observation. In the illuminated crescent, the
surface is in approximate equilibrium with the insolation, so that the tempera-
tures are independent of the assumed thermal model but are dependent only on
the orbital configurations of Mercury and the Earth. For the phase angle
® = 247° and heliocentric longituden = 316°, I have calculated, from the
thermal models presented in this report, the distribution of temperature
across the disk; the equatorial temperatures are illustrated in Figure 18.

After integrating the flux from the planet over the observing aperture and
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correcting for background reading from the sky, I find that the observed
deflections imply an infrared specific intensity from the night side of between
2% and 4% of the bright-side value, depending on the positioning of the
radiometer aperture. When the flux in the 8- to 14-u window from the

bright side is calculated from the model, the dark-side flux is found to imply
a temperature of 180° to 200°K, in agreement with the reduction by Soter
(1966). As is clear from Figure 18, a temperature as high as 180°K is not
compatible with any value of the thermal parameter given here but implies

vy <100 cal-1 crn2 sec1 Iz

deg. However, the usefulness of this observation

is questionable. In their 1936 paper summarizing all their previous Mercury
observations, Pettit and Nicholson gave only data obtained for the whole disk
and specifically stated that measurements of the dark-side temperature can-

not be made (cf. Belton et al., 1967).
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Figure 18. Distribution of equatorial surface temperature
across the disk of Mercury on June 21, 1923,
as calculated from the models.
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A recent observation of Mercury in the 8- to 14-u band has been reported
by Murray (1967), who used higher angular resolution and greater sensitivity
than were available to Pettit and Nicholson. He estimates an upper limit to
the midnight equatorial temperature of 150°K. He thus fails to detect a flux
that is less than one fifth as large as that reported by Pettit and Nicholson,
and this contradiction cannot be attribufed to the o‘rbital geometfy of Mercury,
since the night temperatures are only very weakly dependent on planetary
longitude (see Figure 9). Murray's observation requires that

1 2 ecl/Z

Yy > 200cal " cm” s deg.

5.2 Observations at 3.4 mm

Observations at this wavelength have been made during the past several
years by Epstein and his coworkers with the 4. 6-m telescope of the Aerospace
Corporation. In an early report (Epstein, 1966), no phase effect was indi-
cated, but with an improved signal-to-noise ratio and a longer observing
baseline, a variation with phase was found (Epstein, Soter,. Oliver, Schorn,
and Wilson, 1967). A least-squares fit of a cosine wave to the data from

two synodic periods in 1966 gave the following parameters:
Tp = (291 + 15) + (87 + 18) cos [@ + (41 + 13)]°K.

A similar fit to the combined 1965 and 1966 data gave essentially the same
result. A comparison of the amplitude of this phase effect (30 +.5%) with
Figure 11 and with the calculations of Gary (1967) yields a value of

3<6/\< 4 for the ratio of skin depths divided by the wavelength. Gary cor-
rectly noted that this result was not consistent with the value of & /\ deter-

mined from observations at 1. 9 cm (discussed below).

For direct comparison with the models presented here, I have separated
the data given by Epstein et al. (1967) that were obtained in different appari-
tions and have recomputed normal points. In Figure 19, these points with
their standard deviations are compared with predictions from the models

with 6 /X = 0.34, 0.68, and 1. 36 cm™'. In spite of the small amplitude
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derived from the least-squares fit of a cosine curve to these data, the 1966
points appear to be compatible with these computed curves. The 1965 points,
however, are clearly not internally consistent. We shall therefore concen-

trate on the 1966 data alone.
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Figure 19. Observed brightness temperatures at A = 3.4 mm
(Epstein et al., 1967) compared with predictions
of models having & /A = 0. 34 (dotted), /X = 0.68
(solid), and /N = 1.36 cm~1 (dashed). Closed
circles are 1966 data, and open circles are
1965 data. Errors indicated are the standard
deviation on the mean for each normal point.

Before we conclude which models are really inconsistent with these
data, it is useful to consider the meaning of the formal uncertainties obtained
from the curve-fitting process, such as the +18°K given by Epstein et al.
(1967) for the amplitude of the phase variation. Each of these uncertainties
is computed on the assumption that the other two variables of the three-

parameter cosine fit are held fixed at their correct values. Liet us consider,
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however, fitting a curve to periodic data in which the values around one
phase are much better determined than elsewhere along the curve. It is
unrealistic in such a case to treat the variation in the three parameters
independently. For instance, good fits can be obtained for a wide range of
amplitudes if the mean value is simultaneously adjusted to ensure that the
fitted curve continues to pass through the well-determined points. This
suggests the danger of relying too much on the formal uncertainties in the

parameters when a curve is fitted to data with nonuniform spacing.

As an illustration of the problem discussed above, I have obtained least-
squares fits of a number of periodic functions to the 1966 Mercury observa-
tions. Of the 101 points given by Epstein et al. (1967), 4 were excluded as
obviously inconsistent and the remaining 97 were each given equal weight.

The best-fitting cosine curve is

Ty =284+ 102 cos (@ +27)°K
in fair agreement with the weighted fit given by Epstein. The rms deviation
of the data points from this curve, defined as the square root of the average
of the residuals squared, is 96°K. If, however, the amplitude is held fixed
and a best fit is obtained by adjusting only the mean temperature and phase
lag, the results shown in Figure 20 are obtained. Here, both the mean tem-
perature and the rms deviation of the data from the curve are plotted as func-
tions of the amplitude, expressed as a percent of the mean temperature.
There is little variation in phase lag among these fits. Also shown in this
figure are results of fitting two phase curves derived from the models having
R:‘,‘50 = 0.0and /A= 0.68 and 1. 36 cm_l. The fitting was accomplished by
adjusting the scales to allow for possible errors in absolute calibration of the
obsefvétions or for the influence of a radiative term in the conductivity, as
discussed in Section 4. 3. This one-parameter fit of the models gives essen-
tially the same rms deviation as the two-parameter fits of cosine waves hav-
ing the same amplitude. It appears not only that these data are incapable of

discriminating between the model predictions and simple cosine curves, but

also that the best-fitting cosine curve is only marginally superior in fit to any
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other curve in the amplitude range 15% < AT < 55%. Thus, any value of §/\
between 1.0 and 8. 0 crn_l is probably compatible with the observations.
Temperatures computed from models having y = 250 or 500 cal-l c:rn2 sec1 /2
deg fit the data best when they are lowered by 5% to 10%; however, the tempera-
tures obtained with y = 1000 require no adjustment. This result could be
interpreted as indicating the larger value of y; however, the absolute calibra-
tion of these observations is uncertain by 5% to 10%, so that in practice no

conclusions about the size of y can be drawn.
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Figure 20. Fits of cosine curves to the 1966 data at A = 3.4 mm. The mean
temperature and rms deviation of the points from the cosine
curves are shown as functions of the amplitude of the curves.
The two open circles are computed from model phase curves
(see text).
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5.3 Observations at 8. 0 mm

Observations of a phase effect at 8-mm wavelength have been reported
recently by Golovkov and Losovskii (1968). The measurements were made
with the 22-m telescope of the Lebedev Institute of Physics, USSR, in May
to July 1966. Venus and Jupiter were used as calibration standards. The

least-squares cosine fit to their 10 observed temperatures is given as
TB = (530 £ 50) + (290 + 70) cos [®+ (0 £ 15)]°K

It is immediately obvious that these temperatures are implausibly high,

since near superior conjunction the disk-averaged brightness temperature
exceeds by more than 100° the maximum equatorial surface temperature
possible on Mercury. If, however, we use these results from Golovkov and
Losovsky in spite of the apparent calibration error of nearly a factor of 2, we
find that the amplitude of 55% implies a value of /N = 0. 40 cm_l. Because
of the calibration error, however, this result is of dubious value and will not

be used in later discussions in this report.

5.4 Observations at 1. 94 cm

The microwave observations of Mercury having the highest signal-to-
noise ratio were made by Kaftan-Kassim and Kellermann (1967) with the
43-m telescope of the National Radio Astronomy Observatory in Green Bank,
West Virginia, at a wavelength of 1. 94 cmm. They obtained 11 temperature
points in February and March 1966, covering phase angles from 40° to 200°.
Calibration sources were Virgo A, Hydra A, 3C161, Venus, Jupiter, and

Saturn. A fit of a cosine curve to the weighted data points gives
Ty = (288 7) + (75+ 13) cos [® + (38 £ 17)]°K

The absolute calibration uncertainty is thought to be no more than 15%, with
‘the above values probably a few percent too low (K. I. Kellermann, 1968,
private communication). From this amplitude of 26% + 6%, Figure 11 gives

§/\= 0,80 (+0. 40, -0.25) cm™ ..
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A direct comparison of the observations with the models is shown in
Figure 21. From inspection of the curves, it appears that the data are
compatible with 0.6 < 6 /X < 1. 30, in agreement with the value quoted above
from comparison with the average amplitude predicted for 1967. None of the
curves is a very impressive match to the data, however. The rms deviation
of the data from the model curves is slightly larger than the deviation from
the best-fitting cosine curve, but of course the cosine curve is adjusted
through three parameters to fit these particular data points, while the model

curves vary in only one parameter, §/X. The mean value of 288°K is in

agreement with the models }having R350 = 0.0 and Y350 = 500 cal"1 cm2
secl/2 deg, as is also clear from the comparison of models and data points
shown in Figure 21.
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320 353 25 51 77 100 124 146 165 182 200 214 234°
] I ] I | ] ] ] ] ] i
400 —
0.34
0.68
.36
< 300 -
@
- \
{ S .36
\ 0.68
200 0.34 -
! | | i | | | | J | |
o] 20 40 60 80 100 120 140 160 180 200 220 240°

PHASE ANGLE ¢

Figure 21. Observations at A = 1.9 cm compared with model
predictions for R35g = 0.0 and 6 /\ = 0.34, 0.68,
and 1.36 cm~!, The data points with their error
bars are taken from Kaftan-Kassim and Kellermann

(1967).
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My own observations of Mercury at this wavelength were made partly by
use of the same telescope and general observing techniques employed by
Kaftan-Kassim and Kellermann (1967) and partly by use of the 37-m telescope
of the MIT-Lincoln Liaboratory Haystack Microwave Facility. * The tempera-
tures were determined in each case by direct comparison with Venus, as-
sumed to have a brightness temperature of 485 (+60, -40)°K (Morrison, 1969).
The observed temperatures are consistently higher than those measured by
Kaftan-Kassim and Kellermann, although their calibration was based in part
on a brightness temperature of 500°K for Venus. The observations are plotted
in Figure 21. The apparent absence of a variation with phase suggests that
8/A>1.0 cm-l, The two curves plotted in Figure 22 were computed with
§/n=1.36 cr:n_1 and with R350 equal to zero (bottom curve) and 0.4 (top
curve). The fit with the top curve is satisfactory, although with so few

observations these results must be treated with caution.
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Figure 22. Observations at A = 1. 94 cm made by Morrison in June
1967, November 1967, February 1968, and March 1968.
The model curves illustrated are computed with §/\ = 1. 36
cm-! (y350 = 1000) and R350 equal to 0 and to 0. 4.

"A full description of these observations will be published elsewhere.
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5.5 Observations at 2. 82 cm

A single measurement of Mercury made at 2. 82-cm wavelength with the
46-m telescope of the National Research Council of Canada has kindly been
communicated to me by W. J. Medd (1968, private communication). The
temperature near elongation (® = 105°) was 350°+18° K (internal rms error).
This temperature is 80°+ 40° K higher than is predicted by the models with
R350 = 0. 0, thus supporting the suggestion of an increase in mean brightness

temperature of Mercury with wavelength.

5.6 Observations at 3.75 cm

The most extensive set of microwave observations of Mercury yet made
has recently been completed by M. J. Klein, who used the 28-m telescope of
the University of Michigan to observe over seven synodic periods at a wave-
length of 3.75 cm. Klein (1968a,b) has made a direct comparison of his data
with previously published models (Morrison and Sagan, 1967) and has also
(1968b) compared the data with five-parameter curves-that include a variation
of temperature with hermocentric longitude (35-déy period) as well as with

phase (116-day period). The best-fitting such curve is
Ty = (355 £ 4) + (51 £ 3) cos [@+ (32 +4)] +(10+1)cos[22-(8+11)]°K ,

where £ is the hermocentric longitude. The phase-effect amplitude of 14%
corresponds (from Figure 11) to 8/ = 0.9 cm—l, and the phase lag of 32°
gives (from Figure 12) the same result. The amplitude of the second cosine
coefficient of 3% agrees with the amplitude of this term derived in Section 4. 2
for all wavelengths. The observations and the best-fitting curve are plotted
in Figure 23, taken from Klein (1968b). The plot and the curve fitting are
both made on the assumption that the brightness curve is approximately
periodic with period 350 days, or three synodic periods, as discussed in

Section 4, 1,
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Figure 23. Observations at X = 3. 75 cm. The dashed curve is a
best fit to the data (see text). This figure is taken
from Klein (196 8b).

From a direct comparison with the models (Morrison and Sagan, 1967),
Klein gives 0. 68 < 8 /X< 1. 36 cm—l; this agrees with the value of 6 /\ deter-
mined from the fitted amplitude and phase lag of the phase effect. The
observations, when compared with models having R350 = 0.0, are systemati-
cally high by about 20%; this is also clear from the mean temperature of
355°K quoted above.

These observations at 3. 75 cm are the only ones published to date with
a high-enough signal-to-noise ratio and a long-enough time base to demon-
strate a dependence of brightness temperature on longitude for Mercury.
When sufficient observations are available at any wavelength, the curve-
fitting approach used by Klein should prove very useful. In most cases,
however, the data are insufficient and more information can be derived by a

comparison with two-parameter models as discussed in this report.
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5.7 Observations at 11.3 cm

Using the 64-m telescope of the Commonwealth Scientific and Industrial
Research Organization at Parks, Australia, in the spring of 1964,
Kellermann (1965, 1966) made a series of observations at this wavelength,
covering phase angles from 30° to 125°. Hydra A was used as a calibration
standard. The mean brightness temperature was about 300°K, and no sub-
stantive phase effect was found. An approximate upper limit of about 100°
can be set on the amplitude of the phase variation, indicating 6 /A > 0.15 cm—l
From a point-by-point comparison with the phase curve from Figure 8 for
5/A=0.68 cm_l, I find that the systematic deviation of the observations
from the curves is -2° + 14°K. Thus, these observations do not confirm the
increase of brightness temperature with wavelength discussed in the preced-

ing sections.
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6. CONCLUSIONS

In this report, I have discussed the computation of infrared and micro-
wave brightness temperatures for the planet Mercury from direct computer
calculations of thermal conduction and radiation processes in the planetary
epilith. This analysis is conside‘rably more involved than those given pre-
viously (Gary, 1967; Belton et al., 1967), in which solutions obtained for
the thermal behavior of the Moon are simply scaled to Mercury's mean
solar distance and rotation rate. There are, however, two important advan-
tages in these numerical models: they illustrate the dependence of tempera-
ture on the orbital position of the planet, and they allow a treatment of
temperature-dependent thermal conductivity. In Section 4, I have examined
the differences between the predictions of these models and those obtained
from the lunar scaling, and in Section5, I have compared the predictions with
the data. Most of the observations are of insufficient accuracy to require
the numerical theory for their interpretation, but the observations at wave-
lengths of 1. 94 and 3. 75 cm do begin to show orbital and radiative effects,
and we can expect that in the future even better observational material will

be available.

From the amplitude and shape of the phase variation of microwave
brightness temperature, the parameter 6 /\ has been determined at several
wavelengths. In Figure 24, these results are summarized. Relying pri-
marily on the observations at 1. 94 and 3. 75 cm, I derive a most probable
value for 6 /A of 1.0 cm—l, with likely upper and lower limits of 1.5 and
0.7 cm_l. For comparison with other planets, I use the product of § /)
and the square root of the mean solar period; this parameter, which is inde-
pendent of solar period, is therefore descriptive of the physical nature of the
subsurface material (see Pollack and Sagan, 1965; Morrison and Sagan, 1967).
If the unit of time is the mean solar year, the value of this parameter for
Mercury is 0.7 £ 0. 3 c]fn_1 yrl/z, in good agreement with a value for the
! *yr1 /2 (Gary, 1967) to 0.6 c:rn-1 yrllz (Clardy and Straiton,

1968). These results are not in agreement with those of Golovkov and

Moon of 0.9 cm
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Losovskii (1968), who conclude from their analysis of microwave observations
of Mercury that 6 /A= 0.1 cnn._1 and hence that the subsurface materials of
Mercury and the Moon are distinctly different. However, these authors use
neither the known range of surface temperature on Mercury nor the recent
observations of Klein (1968b) in their analysis, so that their results are sub-

ject to large uncertainties.
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Figure 24. Summary of the observational determination
of §/\ (ecm-1) for Mercury.

From the upper limit to the night infrared temperature given by Murray

(1967), we can estimate that the thermal parameter y

_ 2 1/2 350
200 cal * cm  sec deg. In accepting this, we must disregard the contra-

is greater than

dictory observation made in 1923 by Pettit and Nicholson. Under the assump-
tions that most of the conductivity at this temperature is supplied by contact
conduction and not by radiation and that pc = 0. 30 cal cm-3 deg_l, the thermal
condﬁctivity is

- - -1 -1
K0< 10 4 cal cm 1 sec =~ deg

58



For comparison, the lunar conductivity is of the order of 10"5 and that of

terrestrial rocks is 10"3 or more in the same units. The thermal skin depth

can be computed from the conductivity as follows:

1/2

2]
Lt= TpC cm (21)

where P is the length of the day. Evaluating this expression, we find

Lt< 40 cm.

Using both the thermal skin depth and the value of 6 /\ determined above,
we can investigate the electrical properties of the epilith. From equation

(16), the electrical skin depth is less than 40 \, and k., the microwave

absorption cross section multiplied by the Wavelength,O is greater than 0. 04.
This is consistent with the lunar value for kO of 0.1. The loss tangent can
be found from ko and from the index of refraction of 1.7 determined from
the radar cross section of Mercury: tan A > 2 X 10-3. All these inequali-
ties could be changed to equalities if the night-side infrared temperature of
Mercury were measured; this is the crucial observation from which the

thermal conductivity in the epilith can be found.

The variation of mean brightness temperature with wavelength is diag-
nostic of the significance of temperature-dependent conductivity on Mercury.
In Figure 25, the mean temperatures from the observations are compared
with the model predictions illustrated in Figure 15. The data-are clearly
contradictory, with a sizable increase of temperature above the R350 = 0.0
model indicated by the observations of Morrison, Medd, and Klein, but with
no increase found by Kaftin-Kassim and Kellermann, or by Kellermann?
These differences cannot be explained as due to different calibration systems;
all observers used values for the standard sources in near agreement with

the recent flux scale suggested by Scheuer and Williams (1968), and all used

the American Ephemeris value for the radius of Mercury [which has recently

been confirmed by direct radar measurement (Ash, Shapiro, and Smith,

1967)].

59



380 T Rueg = 1.0 5

R350= 04

—— /
X 340 - S — _
N /- i o ] _
T 350 = 0"/
320 + =

i 1 1 ] | ]
2 3 4 5 6 7

WAVELENGTH (cm)

300 - / Ry50 700 \ ]
|
|

Figure 25. Mean microwave brightness temperatures as
determined from the observations, compared
with the curves of Figure 15.

In spite of the contradictions, the data plotted in Figure 25 do strongly
suggest an increase of brightness temperature with wavelength, and I sug-
gest a tentative value of R = 0.5. This can be compared with a value of

350

R350 near unity suggested for the Moon by Linsky (1966) from an analysis

similar to that presented here. The difference between these two values is
probably not significant. If R350 = 0.5, then the coefficient B of equation

(6) is about 1078 times the contact conductivity K,. We estimated above

that K, < 10'4, so that B < 10" '%. From equations (18) and (19), we can
estimate the mean free path of a thermal photon for this range of B, remem-
bering that d: 1. 35 X 10";12 in these units; we find that this length must be
less than 2 mm. For the more probable value of KO = 10_5, this distance

is reduced to 200 . Even if it is established that R350 is smaller for

Mercury than for the Moon, this does not necessarily imply that particles
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are smaller or more compacted on Mercury; it may be the result, at least
in part, of a somewhat greater contact conductivity on Mercury than on the

Moon. More observations are needed to clarify the situation.

Although the physical properties, such as thermal conductivity, loss
tangent, and particle size, are not determined with as much accuracy as we
might wish from the available data, still it is clear that the epilith of
Mercury is not composed of solid, compact rock. All the evidence presented
here, as well as the results of photometric and polarimetric studies, supports

the hypothesis that the epilith of Mercury is very similar to that of the Moon.
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